
WELCOME TO VALENCIA

Scaling K8s Nodes Without
Breaking the Bank nor Your Sanity
Brandon Wagner & Nick Tran, AWS

Brandon Wagner
Software Engineer

AWS

Scaling K8s Nodes Without
Breaking the Bank nor Your Sanity

Nick Tran
Software Engineer

AWS

● What is Spot? 🐶

● Best Practices

● K8s & Spot ❤
● Autoscaling your nodes

○ Cluster Autoscaler
○ Karpenter

● Demo

Agenda

What is EC2 Spot?

• Spare VM Capacity

• Available at a discount

• Interruptible
• 2-min notice

On-Demand

Spot

 c5.large

● Intro to spot
○ Talk about how spot is cheap why you might want to use vs on demand

● Downfalls of spot and how to best handle it
○ IIN (Instance Interruption Notice)
○ Eviction

● Scale up in Node Autoscaling with K8s and spot
○ HPA/VPA - make pods
○ CAS - need nodes for those specific pods
○ Karpenter - solution for how CAS is not easy (High Level)

● Spot Best Practices and how Karpenter does it
○ Do not use spot max price
○ Flexible instance types
○ Rebalance recommendations

● Demo

Spot Best Practices

• Don’t set a Spot max price

• Flexible instance type requests

• Rebalance Recommendations

Spot Best Practices - Don’t Set a Max Price

• Spot pricing model
overhaul

• Long-term supply and
demand

2017 Pricing Graph

Spot Best Practices - Flexible Instance Types

• Increases Spot instance
availability

• Capacity pools

• Extend instance runtime
• w/ capacity-optimized

Example Hourly Prices

Spot Best Practices - Flexible Instance Types

• Increases Spot instance
availability

• Capacity pools

• Extend instance runtime
• w/ capacity-optimized

m6i.large
us-east-2a

Capacity Pools

m6i.large
us-east-2b m6i.large

us-east-2c p4.8xlarge
us-east-2aU

n
u

se
d

 In
st

an
ce

s

Spot Best Practices - Flexible Instance Types

• Increases Spot instance
availability

• Capacity pools

• Extend instance runtime
• w/ capacity-optimized

https://aws.amazon.com/ec2/spot/instance-advisor

Spot Best Practices - Rebalance Recommendations

• Early warning to indicate a possible Spot interruption

• More time to gracefully shutdown workloads

Common Workloads

• Quick Continuous Integration

• Batch processing

• Stateless APIs

• github.com/aws/aws-node-termination-handler
• Interruption Termination Notifications
• Rebalance Recommendations

• Pod Disruption Budgets (PDBs)

K8s and Spot

K8s and Spot - K8s Eviction API

Kubelet

Pod 2Pod 1

K8s and Spot - K8s Eviction API

Kubelet

Pod 2
Pod 1

(Saving data &
shutting down)

SIGTERM

K8s and Spot - K8s Eviction API

Kubelet

Pod 2
(Draining

connections)

SIGTERM

K8s and Spot - K8s Eviction API

Kubelet

Pod 2
(Draining

connections)

SIGKILL

K8s and Spot - K8s Eviction API

Kubelet

Autoscaling your Cluster

- Pod Autoscaling
- Horizontal Pod Autoscaler (HPA)
- Vertical Pod Autoscaler (VPA)

- Node Autoscaling
- Cluster Autoscaler
- Karpenter

HPA & VPA

- Horizontally scale: adjust pod replicas

- Vertically scale: adjust resources of pods

Cluster Autoscaler

- Simple interface between EC2 AutoScaling Groups (ASGs)

- Increments desired capacity in response to pending pods

- Need to create resource workloads per type of pod resource request

Cluster Autoscaler

- Externally Managed
Infrastructure

- [Spot, OD] x [AZ1, AZ2] x
[m5, c5, p3] = 12 ASGs

Karpenter

- Groupless Node Autoscaler

- Just-in-Time Provisioning
- Pending Pods

- github.com/aws/karpenter
- Vendor neutral

cloud provider interface

Karpenter

- Provisioner CRD

- Requirements
- Scheduling Constraints
- Well Known Labels
- Capacity Type

- Cloud Provider

Karpenter

- Flexibility

- CPU Architecture

Karpenter

- Flexibility

- CPU Architecture

- Capacity Type

Karpenter

Where are the Instance Types?

Karpenter

Where are the Instance Types?

spec:

containers:

- image: pause

 name: gpu-pod

 resources:

 limits:

nvidia.com/gpu: 1

Karpenter - AWS Cloud Provider

- EC2 Fleet API
- Flexible to many instance types
- Chooses optimal AZ and instance type

- Spot to On-Demand Fallback

Autoscaling Nodes - Karpenter

- Scaling down
- ttlSecondsAfterEmpty
- ttlSecondsUntilExpired

- Follows Graceful Node Shutdown

Autoscaling Nodes - CAS vs Karpenter

- [Spot, OD] x [AZ1, AZ2] x [m5, c5, p4, t3] = 16 ASGs

- One provisioner!

Wrapping Up

- Spot Best Practices

- K8s and Spot!

- Autoscaling nodes with Cluster Autoscaler and Karpenter

Demo!

- Provisioners

- Stuff

- More stuff

Questions?

Notes

- Switch off less
- Intra-section switches are rough -- overarching story to connect in the beginning helps

- Pods -> Node Capacity story transition better
- Configuration bloat picture (why is it hard? mixed instance types in CAS, other cloud providers?)
- Kubecon ppl might get mad if we go super hard into AWS rhetoric
- More pictures on that one slide (not just tekton)
- Graceful Node Shutdown in K8s with kubelet vs NTH/Karpenter
- Deeper on fewer subjects better than shallow on more
- Explain instance pools better in combination with the price graph.

- One .16xl vs 16 .xl?
- column + row names

- Hourly vs Monthly rates for instances
- How frequent interruptions are
- Re-evaluate common Spot Workloads
- Talk + investigate more about Spot to OD fallback with EC2 folks

